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Abstract. The scaling exponent for the mean square distance covered in a random walk (dw) and
the average number of distinct sites visited (dn) are determined for a family of Sierpinski carpet
patterns. We suggest a new random walk algorithm to generate walks on an effectively infinite
deterministic fractal lattice. The algorithm is applied to several Sierpinski carpet patterns with the
same Hausdorff dimension. We show that the systems have a quite different scaling exponentdw
and, further, that the generally accepted resultdn = ds does not hold for all of these, whereds is
the spectral dimension.

1. Introduction

Several features of the random walks (RWs) on fractal lattices are being extensively investigated
at present [1–3]. It is now well known that diffusion on a fractal is anomalous, with the mean
square distance travelled in timet given by

〈r2〉 ∼ t2/dw . (1)

The walk exponent is usually greater than two for fractals. For a RW on a fractal lattice,
t is equivalent to the number of stepsN .

Identification of the factors which determinedw is still a very elusive problem. Some of
the features which may be important are the following.

Ramification. Ramification of the pattern means branching. Actually, the fractal
dimensiondf provides a very broad indication of the structure and fractals with the samedf
can have very different patterns and therefore properties. Ramification specifies some further
information. Fractal patterns are classified as ‘finitely’ and ‘infinitely’ ramified, according
to the number of points which are to be disconnected in order to isolate a portion of the
pattern [1,4]. If a finite number of cuts isolate a certain region, the fractal is said to be finitely
ramified, e.g. the Sierpinski gasket pattern. But in the case of Sierpinski carpets, to cut out
a section one has to cut out line segments rather than points and thus ramification is infinite.
Another feature is the presence or absence of loops in the structure. In a loopless fractal any
two arbitrary points are connected by only one path.
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Chemical Distance.The minimum path lengthalong the structurebetween two arbitrary
sites on a fractal is called the chemical distance,l. The average square distance from the origin
on the fractal scales withl as

〈r2〉 ∼ l2dl .
dl is the chemical distance exponent.

While for the simpler class of finitely ramified loopless fractalsdw can be exactly
determined [1], there is no such prescription for structures with loops. For looped structures
which are finitely ramified it is possible to determinedw from a scaling of the transit times, but
no exact relationship ofdw with the the fractal dimensiondf and chemical distance exponent
dl exists. Such a procedure has been applied to the Sierpinski gasket [1,5].

For infinitely ramified fractals the transit time scaling method is also inappropriate and so
the only possible way to determinedw is through RW simulations.

The principle objectives of this work are as follows:

(1) To study the variation ofdw in different fractal patterns with the samedf , and to try to
identify the features of the pattern which determinedw.

(2) The other problem we address is the variation of the average number of distinct sites
visited on the fractal within the duration of the walk.

It is found that this number varies witht (orN ) according to the power law

SN ∼ tdn/2. (2)

This dn is usually considered equal to the spectral dimensionds obtained from the scaling of
the density of states of vibration on the fractal with frequency [6,7]

ρ(ω) ∼ ωds−1. (3)

However, there appear to be exceptions to this rule [8–10]. The equivalence ofdn andds is not
rigorously established and the conditions under which they may become distinct is not clearly
specified.

In a preliminary study on Sierpinski carpets we showed thatdn andds may not always be
equal [10]. However, that work suffered from inaccuracies due to finite-size effects.

In this paper we develop and use a new RW algorithm to study Sierpinski carpets with
larger scaling factors, of infinite as well as finite ramification, with and without loops. We
have also repeated the calculations on the earlier patterns studied.

The salient feature of the new RW method is that the walker sees an effectively infinite
lattice so our results are much more reliable. The problems arising due to the boundary in
the finite system are eliminated. The only limitation on the walk is due to the availability of
computer time.

The question of identifying the features of the pattern affectingdw is still far from answered,
but our results indicate that the presence of loops on all sizes is necessary fordn andds to be
equivalent.

The organization of the paper is as follows. We discuss in section 1.1 the problem of the
determination ofdw in further detail and also the earlier works on this subject; in section 1.2
we discuss work on the number of distinct sites visited in the RW. Section 2 describes the
carpet patterns we have studied. In section 3 our new RW algorithm is presented. In section 4,
we give the results obtained and discuss implications of the results.



A new algorithm for infinite fractal lattices 6505

Figure 1. Construction of a Sierpinski carpet withb = 4 andm = 12. (a)–(c) The first stage, and
(d) the second stage. Shaded squares are blocked.

1.1. Diffusion in carpets

The structure of the two-dimensional Sierpinski carpet pattern is as follows: a square of size
say ‘L’ is divided intob × b equal smaller squares, as shown in figure 1. ‘m’ of the smaller
squares are occupied and the remaining(b2−m) vacant. This gives the generator, or first stage
pattern. Higher stages are obtained by repeating the division process on each of the occupied
squares. Continuing this indefinitely gives a fractal pattern with Hausdorff dimension

df = (logm/ logb).

Now by arranging the occupied squares differently various patterns can be created each
having the same Hausdorff dimensiondf . The Sierpinski carpets may have finite or infinite
ramification as we shall show later.

A RW along the occupied sites will give the walk exponent from equation (1). The value
of dw is determined not only bydf but also by other details of the generator. It is our aim to
try to identify these features.

As discussed in the previous section, no exact prescription has been found to determine
dw when the generator is an infinitely ramified and looped structure, but attempts have been
made to frame some approximate rules.

Such an approximate calculation has been performed by Gefenet al [11] on Sierpinski
carpets by a bond-moving renormalization group (RG) approach on a resistance network of
connected bonds. They obtained the resistance exponent and calculated the diffusion exponent
from it, using the fractal Einstein relation [1,2].

Another calculation on Sierpinski carpets considering bulk resistance was suggested by
Kim et al [12], showing bounds ofdw. They showed that their simulation results lie within
these bounds. Their work considers only symmetric carpets, moreover, finer details of the
pattern are not considered.

Several attempts have been made to identify a precise geometric characteristic which will
give the variation indw for structures having the samedf . Some have suggested ‘lacunarity’ as
the appropriate quantity [12–16]. This term was first introduced by Mandelbrot [4] as a feature
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distinguishing between patterns of the samedf but with different arrangements. Lacunarity, as
the name implies, is a measure of the size distribution of the ‘lacunae’ or holes in the pattern.
It is also related to the degree of departure from translational invariance. However, there is
still no very general definition of lacunarity which is applicable to all fractals, so it is not such
a useful approach.

In a preliminary study reported by our group [10] the diffusion behaviour for a number of
carpet patterns with the samedf but a different generator were reported. But these results are
rather inaccurate due to finite-size effects. This work is an extension of the study, where we
repeat the earlier work onb = 4 patterns with greater accuracy and also study larger and more
varied carpet patterns withb = 7.

The variation indw obtained from our observations has been correlated with the average
number of nearest neighbours per siteAnn and the area–perimeter ratioβ. These two quantities
give an estimate of the compactness of the structure. We find, besides, that for infinitely ramified
carpets, the distribution of loop sizes plays a significant role.

1.2. Distinct sites visited

During a RW a walker may visit a certain site a number of times, unless the algorithm specifies
a self-avoiding walk. A quantity of considerable interest in such cases is the average number
of distinct sitesSN visited in a walk ofN steps. Here a site visited repeatedly is counted only
once. ObviouslySN 6 N , where the equality holds for a self-avoiding walk.

The quantitySN is important in the study of diffusion-controlled reactions and the kinetics
of trapping processes [1].

The exponentdn controllingSN and the spectral dimensionds are usually assumed equal.
Let us examine the logic behind this premise. From the equivalence of the vibration and
diffusion problem, Alexander and Orbach derived the relation [7]

df /dw = ds/2. (4)

In the limiting case of a Euclidean lattice this relation remains valid, since in this casedw = 2
for all dimensions and

df = ds = d
is the Euclidean dimension. The exponentdn is introduced in the following manner. It is
assumed that the number of distinct sites visited inN steps is proportional to the volume
accessible inN steps:

SN = V (N). (5)

This leads to

SN = Ndf /dw

and hence

dn = ds.
The crucial assumption in this derivation is equation (5), which may not be valid in general
whereds 6 2 is not satisfied. The simplest case in which it is violated is the Euclidean system
for dimension>2. Here the diffusion law is

〈r2〉 ∼ N
and the distinct sites visited scale as follows [17]:

SN ∼ N1/2
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for one dimension,

SN ∼ N/ logN

for two dimensions and

SN ∼ N
for three and higher dimensions.

Sodn andds are not equivalent for dimensions higher than two. Obviously,dn cannot be
greater than two sinceSN cannot increase faster thanN (or t).

In higher dimensions each site has a larger number of nearest neighbours and the
probability of repeatedly visiting the same sites diminishes.V (N) at fixedN is, however,
an increasing function of dimension.

It is asserted [6] that equation (5) is true ford < 2 for Euclidean space and by analogy
true for fractals withds 6 2. The reasoning behind this is not very clear. Havlinet al [18]
have studied RW with a large number of walkers for systems withds < 2. They find theN
(or t) dependence of the number of sites visited as in equation (5). Others have suggested
fractal systems where this relation does not hold. Dhar and Ramaswamy [8] and Nakanishi
and Hermann [19] give the example of tree-like or comb-like structures. Here the random
walker may get trapped for a long time on a single branch and thus cannot sample the whole
fractal system uniformly. In this case equation (5) does not hold: in structures such as this,
the exploration is not ‘compact’. They argue that the presence of loops lets the walker wander
more freely in the whole structure and reduces the difference betweendn andds .

We have calculated the two exponents,dn andds , separately for various Sierpinski carpet
patterns with the same fractal dimension.dn has been calculated directly, using the meanSN
obtained from RW simulations. On the other hand,ds is calculated through relation (4) using
dw, obtained from RW simulations. A significant structure-dependent deviation

δ = dn/2− ds/2 (6)

is found; this is discussed in later sections.
Our work on Sierpinski carpets of different patterns illustrates cases whereδ is negligibly

small, as well as cases where it has a nonzero value outside the limits of error.
We find that for carpet blocks which consist of compact regions of accessible sites separated

by compact blocks of inaccessible sites,δ is nonzero even when loops are present. For finitely
ramified patternsδ increases withAnn. This is presumably because such patterns are closer
to a Euclidean lattice. On the other hand, patterns which are loopless also have a largeδ as
suggested in [8,19]. It appears that forδ to approach zero the presence of loops on all sizes is
required, i.e. there must be a broad and uniform distribution of loop sizes. Unfortunately, the
error in our estimation ofδ is so large that we cannot attempt to correlate the magnitude ofδ

with any definite feature of the pattern.
It is indeed diffficult to draw any final conclusion on such a complex problem from the

study of such a small number of patterns. Much work is still necessary to find the appropriate
features of the pattern which determineδ.

2. The carpet patterns

Our carpet pattern generators consist of a mesh ofb × b small squares, of which ‘m’ are
occupied. The generator is repeated self-similarly on the occupied squares to give the fractal
pattern. We have studied one smaller set of patterns withb = 4 andm = 10, and another set
with b = 7 andm = 30. The generators are shown in figures 2–4. Second-stage patterns of
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Figure 2. Generators of the 4×4 carpets studied. Arrows
indicate positions of the connected paths which will
appear in the second stage. Shaded squares are blocked.

Figure 3. Generators for the finitely ramified 7×7 carpet
patterns studied. Shaded squares are blocked.

a few selected carpets are shown in figures 5 and 6. All patterns belonging to the the first set
have the same fractal dimension

df = log 10/ log 4= 1.66

and the second set

df = log 30/ log 7= 1.748.

We have tried to make the patterns as different from each other as possible, keeping only
the total number of occupied squares constant, for each set. The only restriction imposed is
that the accessible sites are all connected to each other, leaving no isolated open regions. This
is neccessary to prevent the random walker from becoming trapped.
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Figure 4. Generators of the infinitely ramified carpet patterns studied. Multiple entry points shown
by the arrows indicate infinite ramification. Shaded squares are blocked.

Figure 5. (a)–(c) represent, respectively, the second stages of the motifs in figures 2(a), (b) and
(d). The shaded squares are blocked.
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Figure 6. (a)–(c) show the second stages of 3(d), 4(h) and 4(i), respectively. The shaded region is
inaccessible.

When the generators are arranged to form the higher-stage pattern, the number of entry
points between adjacent lower-stage motifs determines the ramification. For patterns where
there is only one entry point connecting opposite sides of the squares as those shown in
figures 2 and 3 the ramification is finite. But when multiple entry points are possible the
pattern is infinitely ramified, as in figure 4. The entry points where opposite sides match are
indicated by double arrows in the figures.

To obtain a quantitative measure of the ‘difference’ between the patterns of the same set,
we have used two quantities. One is the average number of nearest neighbours per siteAnn, and
the other is the area–perimeter ratioβ. These two measures are found to be almost equivalent.
Some properties of the RW appear to be correlated to a systematic variation of either of these
two parameters. However, they alone are not sufficient, especially in the case of the patterns
which are infinitely ramified.
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The problem of characterization is not fully solved yet, we propose as further significant
features the presence of ‘clusters’ and ‘loops’ in the pattern. These terms are defined later.
But we do not yet have a satisfactory quantification for these two features.

The patterns withb = 4 in our study are all finitely ramified, but theb = 7 motifs have
infinite ramification in some cases. For the patterns which are loopless as well as being finitely
ramifieddw can be calculated using the relation given by Havlin and Avraham [1], ifdl is
known. For such patterns our simulated results agree very well with the calculated exponents.
This gives us further confidence in the RW procedure used.

In analysing the patterns we use the term ‘loop’ where one or more blocked sites are
surrounded by accessible sites. The size of the loop formed is measured by the smallest
possible closed path enclosing the blocked sites. By the term ‘cluster’ we mean a compact
group of accessible sites. The size of a cluster is measured by the number of such adjacent
sites. We require a ‘cluster’ to be formed by at least four adjacent sites, two along thex-axis
and two along they-axis. It is to be noted that a loop or cluster may not be apparent in the
generator of the pattern, but may be formed in the second or higher stages.

Having formed the fractal carpet pattern we proceed with the RW along accessible sites,
according to the algorithm described in the next section.

3. The RW Algorithm

In our earlier work [10] we generated carpet patterns up to the fifth stage, and performed
RWs on them using the blind-ant algorithm [1]. Walks which reached the boundary of the
fifth-stage pattern were terminated and not taken into account. Though the number of walks
thus discarded was very small, the process affected the average results considerably. This is
because the walks terminated were the longest ones.

In our new algorithm, we do not store a generated pattern up to some definite stage. We
only supply the generator as input. The random walker is set on some site and it tests whether
each site it arrives at is an allowed site, as it goes along. The procedure is as follows.

The walk is confined to theX-positive andY -positive quadrant only, in the two-
dimensional plane. The initial site is chosen to have coordinates larger than the total number
of steps to be travelled. To check whether a site is accessible the first step is to identify the
stage the point belongs to. For ab × b carpet, a point having either anX- or Y -coordinate
betweenbn−1 andbn belongs to thenth stage. In thenth-stage coarse-grained pattern with
units of sizebn−1, it is checked whether the block containing the site matches an accessible
site on the given motif. If found accessible, the corresponding point in the next lower stage,
i.e. (n − 1), is ascertained. In this way the point is successively scaled down until it reaches
the first stage. Finally, if the position in the first stage matches an accessible point then it is
an allowed site. If the point corresponds to a blocked site, at any stage of the process, it is
inaccessible. We illustrate the algorithm more fully with examples in the appendix. Further
details are given in [20].

The advantage is that the system becomes effectively infinite without requiring storage
of a large number of points. The self-similarity of the fractal lattice is fully utilized here.
Algorithms have been proposed previously for RWs on an effectively infinite lattice, e.g.
on percolation clusters [21]. But there, although the boundary effect is absent, a record of
previously visited sites must be maintained since the disorder is quenched, i.e. a site once
blocked must always be inaccessible.

In the present case, the pattern being deterministic, the problem mentioned above does
not arise and each site is separately checked for accessibility as the walk proceeds.
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Figure 7. Variation in dw anddn/2 with the number of walks averaged over for the pattern of
figure 4(e).

Table 1. Results forb = 7 carpet patterns, i and f denote infinite and finite ramification.

Carpet Ram Ann β dw ± 0.002 δ ± 0.01

4(a) i 2.86 0.88 2.194 0.00
4(b) i 2.52 0.68 2.255 0.00
4(c) i 2.37 0.61 2.266 0.02
4(d) i 2.64 0.74 2.289 0.00
4(e) i 2.27 0.59 2.360 0.03
4(f ) i 2.07 0.54 2.388 0.02
4(g) i 2.54 0.68 2.419 0.04
4(h) i 2.07 0.52 2.547 0.03
4(i) i 3.00 0.99 2.495 0.07
3(a) f 3.03 0.94 2.571 0.09
3(b) f 2.76 0.81 2.645 0.08
3(c) f 2.69 0.76 2.675 0.07
3(d) f 2.00 0.50 2.746 0.05

4. Results

In this section we present the results for the observed variation indw and the approximate value
obtained forδ.

RWs on complicated fractal lattices require averaging over a large number of walks to
give converging results. We began each walk from a different point chosen randomly. We
found that averaging over at least 70 000 such walks gives a value ofdw anddn converging to
within 0.002. In figure 7, we show how these exponents converge on increasing the number
of walks. The walks are of 2 000–10 000 steps.

4.1. Variation indw

First we discuss the results for theb = 7 carpets, as it was possible to produce a greater variety
of these patterns. The values fordw obtained from the simulations are given in table 1. There
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Figure 8. (a) dw versusAnn andβ for the patterns of figure 3. (b) dw versusAnn andβ for the
patterns of figure 4.

is a wide variation indw ranging from 2.19 to 2.75. The difference arises only due to pattern
geometry, since thedf of all the patterns are the same. Table 1 also gives the values ofβ and
Ann.

It is seen that for the finitely ramified structures, there is a systematic almost linear variation
in dw with Ann or, equivalently withβ. An increase inAnn or β represents an increase
in compactness. The change indw with compactness can be understood from the following
argument: when a walker diffuses through a very compact structure, it sees an almost Euclidean
lattice for a considerable time, sodw has a value closer to the Euclidean value two. A more
fragmented pattern with a lowerβ gives a largerdw, i.e. shows subdiffusive behaviour. This
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Table 2. Results forb = 4 finitely ramified carpet patterns.

Carpet Ram Ann β dw ± 0.002 δ ± 0.01

2(a) f 2.00 0.50 2.538 0.01
2(b) f 2.44 0.64 2.528 0.04
2(c) f 2.67 0.75 2.524 0.06
2(d) f 2.67 0.75 2.514 0.06

was also reported previously in [10]. The variation ofdw with β is plotted in figure 8(a). The
b = 4 patterns which are finitely ramified show a similar behaviour. The results for these
patterns are shown in table 2.

The infinitely ramified structures are much more complicated, a systematic variation in
dw with compactness is no longer observed. The points corresponding to infinitely ramified
structures are also plotted in figure 8(b) to show that there is no apparent correlation between
dw andAnn here.

Overall, we finddw(max) for our patterns, i.e. the highest obtained value is very close
to (1 + df ), which is given by the relation for loopless and finitely ramified patterns, where
df = dl . The diffusion behaviour is strongly affected bydl , but since we have no estimate of
this exponent at present, we cannot check such a correlation.

Recently, a similar study on the diffusion behaviour of a family of Sierpinski carpets was
performed by Kimet al [12]. They consideredb × b squares withl × l squares blocked out.
The patterns were symmetric along theX- andY -directions. They gave theoretically estimated
bounds for the values ofdw making certain approximations.

Let us see how our results fit in with these bounds. We calculate their bounds forb = 7
andl = 5 or l = 6, because in our case the number of blocked sites is 30 which is in between
52 and 62. The lower bound turns out to be 2.16 (forb = 7, l = 5), close to our result
dw(min) = 2.19. However, the upper bound withb = 7 andl = 6 is 2.32, whereas we find
dw(max) = 2.75. Possibly our values are higher because of the highly fragmented and loopless
nature of a few of them. Another possibility is that their analysis does not hold for asymmetric
patterns.

It appears that a considerable amount of work is still required to explain the diffusion
behaviour in infinitely ramified fractals. The presence of loops and clusters appears to play an
important role, this is discussed in the next section. Figure 8 shows a plot ofdw versusAnn.

4.2. The estimation ofδ

We now examine the deviationδ which measures the departure from the relation (6) for the
different patterns.

A glance at table 1 shows thatδ varies from a value close to zero to about 0.10. The error
in estimation ofδ is about 0.01, so it is not meaningful to attach too much importance to the
exact values given. But it is quite clear that there is a deviation from the relation (6) for a
number of patterns, which is outside the range of error. Let us try to see what characteristics
of the pattern determineδ.

Theb = 4 carpets do not show much variation inδ, so we take theb = 7 carpets first. If
we group all the patterns into two classes, one withδ in the range 0–0.05 and the others withδ
from 0.05–0.10, we cannot correlate the variation withβ. Since the distribution of loops and
clusters is not clear just by looking at the generator, let us look at the second-stage patterns.
Some of them are shown in figures 5 and 6. In table 1 the finitely ramified patterns are denoted
by ‘f’, and the infinitely ramified ones by ‘i’. It is quite evident that the finitely ramified
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patterns all have much higher values ofδ than those in infinitely ramified patterns with the
exception of pattern 4(i). However, the second stage of pattern 4(i) shown in figure 6(c) does
not resemble the other infinitely ramified patterns, the second stage of one of which, 4(h), is
shown in figure 6(b); but it is very similar to pattern 3(d), the second stage of which is shown
in figure 6(a). In fact, most of its properties are very close to pattern 3(d). This suggests that
whilst not apparent from the generator this pattern 4(i) should be grouped with the finitely
ramified class as far its diffusion behaviour is concerned. That is, the random walker sees
patterns 4(i) and 3(d) as very similar, although one of them is finitely ramified and the other is
not. Exactly which parameter should be used to bring out the underlying similarity between
these two is not very clear to us, but the clusters and loops in figures 3(d) and 4(i) can be seen
to be very similar to the second-stage patterns in figures 6(a) and 6(c). A possible reason may
be the presence ofuniquebottlenecks for paths spanning the carpet from left to right or top to
bottom.

In general, the presence of loops reduces the value ofδ as suggested by Dhar and
Ramaswamy [8] and Nakanishi and Hermann [19], but in the case of finitely ramified patterns
the presence of compact clusters appears to increaseδ as reported earlier by Dasguptaet al [10].

In conclusion we have shown that (i) the diffusion exponent may vary widely for Sierpinski
carpets with the same Hausdorff dimension, and (ii) the equivalence betweends anddn, the
exponent for the number of distinct sites visited, does not always hold. Further work is
necessary to pinpoint the features of the pattern responsible for determining this difference.
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Appendix. Implementation of the RW algorithm

We illustrate here how the algorithm for walks on infinite deterministic fractals works, with
concrete examples.

Let us take the pattern with generator 2(d) and second stage 5(c), hereb = 4.
The sites are identified by coordinates(x, y) starting with(0, 0) as the origin. Coordinates

of the ten allowed sites are(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and
(3, 0) respectively.

Supposing the random walker chooses the point(72, 30) and we want to find out whether
it is accessible or not.

The larger coordinatex lies between 43 and 44. So the point belongs to the stagen = 4.
We consider the coarse-grained fourth stage pattern by looking at it through a grid of spacing
4n−1 = 64. So our point belongs to the block(1, 0) starting from the initial block(0, 0), we
call this the ‘equivalent coordinate’ of the fourth stage.

Comparing with the generator (figure 2(d)), this is seen to be accessible, so we move on
to the third stage. Now the coordinates to be considered have reduced to the modulus ofx with
respect to 64 and the modulus ofy with respect to 64, i.e.(8, 30). The coarse-grained grid is
now 42 = 16. Following the earlier procedure the equivalent coordinates for the third stage
are(0, 1), which is accessible in figure 2(d). In the second stage the modulus of 8 with respect
to 16 and the modulus of 30 with respect to 16 gives(8, 14), which when coarse grained on
scale 4, give equivalent coordinates(2, 3). This point is inaccessible according to figure 2(d),
so we conclude that(72, 30) is an inaccessible site.
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In general, in thenth stage, the equivalent coordinates are given by:xr (eq) = integer
part of (xr/br−1); yr (eq) = integer part of (yr/br−1). If (xr ,yr ) matches an allowed site, the
coordinates carried over to the next stage are:xr−1 = xr modbr−1; yr−1 = yr modbr−1. If
an equivalent coordinate of any stage does not match the list of accessible sites, the site under
consideration is blocked, only those surviving up to stage 1 are accessible.

References

[1] Havlin S and Avraham D B 1987Adv. Phys.36695
[2] Bouchaud J P and Georges A 1990Phys. Rep.195127
[3] Rammal R 1981J. Stat. Phys.36517
[4] Mandelbrot B B 1977Fractals—Form, Chance and Dimension(San Francisco: Freeman)
[5] Dasgupta R, Ballabh T K and Tarafdar S 1994Phys. Status Solidi181313
[6] Rammal R and Toulouse G 1983J. Phys. Lett.44L13
[7] Alexander S and Orbach R 1982J. Phys. Lett.(Paris)43L625
[8] Dhar D and Ramaswamy R 1985Phys. Rev. Lett.541346
[9] Vicsek T 1992Fractal Growth Phenomena(Singapore: World Scientific) p 133

[10] Dasgupta R, Ballabh T K and Tarafdar S 1994Phys. Lett.A 18771
[11] Gefen Y, Aharony A and Mandelbrot B B 1984J. Phys. A: Math. Gen.171277
[12] Kim M H, Yoon D H and Kim I 1993J. Phys. A: Math. Gen.265655
[13] Liu B and Yang Z R 1986J. Phys. A: Math. Gen.19L49
[14] Liu B 1987J. Phys. A: Math. Gen.20L163
[15] Taguchi Y 1987J. Phys. A: Math. Gen.206611
[16] Fabio D, Reis A A and Reira R 1993J. Stat. Phys.71453
[17] Montroll E W and West B J 1979 Enriched collection of stochastic processesStudies in Statistical Mechanics

Vol VII ed E W Montroll and J L Lebowitz (Amsterdam: North Holland) ch 2
[18] Havlin S, Larralde H, Trunfio P, Kiefer J E, Stanley H E and Weiss G M 1992Phys. Rev.A 46R1717
[19] Nakanishi H and Hermann H J 1993J. Phys. A: Math. Gen.264513
[20] Dasgupta R 1996PhD ThesisJadavpur University, Calcutta
[21] Stauffer D 1986On Growth and Form, Fractal and Non-Fractal Patterns in Physics(Dordrecht: Martinus

Nijhoff) p 90


